Wave Optics

Intensity of a Wave

$$I = \frac{1}{2}\omega^2 A^2 \rho v$$

$$\rho = \text{density of medium}$$

$$v = \text{speed of wave}$$

Interference

Constructive Interference

Phase difference,

$$\phi = 2n\pi$$

Path difference,

$$\Delta x = n\lambda$$

where, n = 0,1, 2, 3,...

For Destructive Interference

Phase differnece,

$$\phi = (2n-1)\pi$$

Path difference,

$$\Delta x = \frac{(2n-1)\lambda}{2}$$

where, n = 0,1, 2, 3,...

Amplitude of Resultant Wave

$$R = \sqrt{a^2 + b^2 + 2ab\cos\phi}$$

$$R_{max} = (a+b)$$

$$R_{max} = (a-b)$$

Intensity of Wave

$$I = a^{2} + b^{2} + 2ab \cos \phi$$
$$I = I_{1} + I_{2} + 2\sqrt{I_{1}I_{2}} \cos \phi$$

Young's Double Slit Experiment

Position of bright fringe,

$$y_{bright} = \frac{n\lambda}{d}D$$

Position of dark fringe,

$$y_{dark} = \frac{(2n-1)\lambda}{2d}D$$

Fringe Width, $\beta = \lambda D/d$

Angular Width

$$\theta = \frac{\lambda}{d} = \frac{\beta}{D}$$

Insertion of Transparent Slab in YDSE of Thickness t

$$y = \frac{Dt(\mu - 1)}{d}$$

Diffraction

For Secondary Minima

Path difference = $n\lambda$

Linear distance =
$$\frac{nD\lambda}{a} = \frac{nf\lambda}{a}$$

Angular spread
$$=\frac{n\lambda}{a}$$

where, λ = wavelength of light a = width of single slit D = distance of screen from the slit

f = focal length of convex lens

For Secondary Maxima

Path difference =
$$\frac{(2n+1)\lambda}{2}$$

Linear distance =
$$\frac{(2n+1)D\lambda}{2a} = \frac{(2n+1)f\lambda}{2a}$$

Angular spread =
$$\frac{(2n+1)\lambda}{2a}$$

For Central Maxima

Linear width of central maxima,

$$\frac{2D\lambda}{a} = \frac{2f\lambda}{a}$$

Resolving Power

Angular width of central maxima,

$$2\theta = \frac{2\lambda}{a}$$

$$RP = \frac{1.22\lambda}{2\mu \sin \theta}$$

Brewster's Law

$$\mu = \tan i_p$$
$$i_p + r = 90^{\circ}$$

Polarisation

Intensity of light through analyser for Unpolarised light

$$=\frac{I_o}{2}\cos^2\theta$$

Intensity of light through analyser for Polarised light $= I_o \cos^2 \theta$

Ray Optics

Laws of Reflection

- (i) The incident ray, the reflected ray and the normal at the point of incidence all three lie in the same plane.
- (ii) Angle incidence (i)is = Angle reflection (r).

Angle of deviation	$\delta = 180 - 2i$		
Number of Images formed by two Plain Mirrors Object	$n = \left(\frac{360}{\theta} - 1\right)$ even integer $n = \frac{360}{\theta}, \text{ odd integer}$		
Focal length	$f = \frac{R}{2}$ $R = \text{radius of curvature}$		
Mirror Formula u = distance of the object v = distance of the image	$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$		
Linear Magnification	$m = -\frac{v}{u}$		

Newton's formula for a concave mirror

$$f = \sqrt{x_1 x_2}$$

where, x_1 and x_2 are the distances of object and image from the focus

Refraction

Laws of Refraction

- (i) The incident ray, the refracted ray and the normal at the point of incidence, all three lies in the same plane.
- (ii) The ratio of sine of angle of incidence to the sin of angle of refraction is constant for a pair of two media,

$$\frac{\sin i}{\sin r} = \mu$$
; μ = refractive index

Angle of deviation

$$\delta = i - r$$

 $Apparent \ distance = \frac{Real \ depth}{\mu \ object \ w.r.t \ observer}$

Shift of image =
$$\left(d - \frac{d}{\mu}\right)$$

Critical Angle

$$\mu = \frac{1}{\sin C}$$

Total Internal Reflection

- (i) The ray must travel from denser medium to rarer medium.
- (ii) Angle (Incidence) must be greater than Critical Angle

79

Image Formation by Concave Mirror				
Position of Object	Ray Diagram	Properties of Image		
At infinity	FFP	Real, inverted, very small at F		
Between infinity and C	O C	Real, inverted, diminished between Fand C		
At C	CFF	Real, inverted, equal in size at C		
Between F and C	C. F.	Real, inverted and very large between 2F and infinity		

Lens **Lens Formula** $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ Lens Maker's formula $P = \frac{1}{\epsilon}$ Power of a Lens **Focal Length of a Lens Combination** When lenses are separated by When lenses are in contact a distance d $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$ $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{1}{f_1 f_2}$ $m = -\frac{1}{u}$ **Linear Magnification** Formation of Image by Convex Lenses Position of Nature and Ray Diagram **Position** Size of Image Image of Object

Formation of Image by Concave Lenses						
Position of Object	Ray Diagr	ram	Position of Image	Nature and Size of Image		
At infinity	2F F	2F	At the focus	Virtual erect and point size		
Anywhere except on the principal axis $F_1 \circ F_2 = F_1 \circ F_2$ Between lens and $F_2 \circ F_2 = F_1 \circ F_2 \circ F_2$						
Prism						
The refractive index of material of prism $\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)} \; ; A = \text{angle of prism}$						
Angle of Devia	Deviation $\delta = i + e - A; \ \delta_{min} = 2i - A$					
Magnifying Power of Simple Microscope $m_{max} = 1 + \frac{D}{f}; m_{min} = \frac{D}{f}$						
Magnifying Power of Compound Microscope $m_{max} = \frac{v_0}{u_0} \left(1 + \frac{D}{f}\right); \ m_{min} = \left(\frac{v_0}{u_0}\right) \frac{D}{f}$						
				84		

Astronomical Telescope

When final image is formed at least distance of distinct vision

$$M = \frac{f_0}{f_e} \left(1 + \frac{D}{f_e} \right)$$

Length of the telescope, $L = f_0 + u_e$

When final image is formed at infinity

$$M = \frac{f_0}{f_e}$$

Length of the telescope, $L = f_0 + f_e$

NEET 2023 PYQ'S (Chapter 19 Wave Optics)

 Light travels a distance x in time t1 in air and 10x in time t2 in another denser medium. What is the critical angle for this medium?

$$heta_c = \sin^{-1}\left(rac{10t_1}{t_2}
ight)$$

 For Young's double slit experiment, two statements are given below:

Statement I: If screen is moved away from the plane of slits, angular separation of the fringes remains constant.

Statement II: If the monochromatic source is replaced by another monochromatic source of larger wavelength, the angular separation of fringes decreases.

In the light of the above statements, choose the correct answer from the options given below:

Statement I is true but Statement II is false

 In the figure shown here, what is the equivalent focal length of the combination of lenses (Assume that all layers are thin)? -100cm

 Two thin lenses are of same focal lengths (f), but one is convex and the other one is concave. When they are placed in contact with each other, the equivalent focal length of the combination will be: infinite

86

